Improved SPH methods for simulating free surface flows of viscous fluids
نویسندگان
چکیده
In this paper we present two enhanced variants of the smoothed particle hydrodynamics (SPH) method for the numerical simulation of free surface flows of viscous fluids. Improvements are achieved by deriving a new set of general discrete SPH-like equations under an energy-based framework and applying a corrected (high-order) or coupled particle approximation scheme for function derivatives. By doing so, we ensure that the enhanced variants retain the conservative nature of SPH which is important for the stability of long-term simulations. Among various corrected approximations, we here implement the one obtained by the so-called finite particle method (FPM) within the framework to produce a higher-order SPH method which conserves both linear and angular momentums. In order to improve the efficiency of the higher-order variant, a coupled approach with the idea of using the SPH approximation for the interior particles and the FPM approximation for the exterior particles is also proposed and tested in this paper. Three prototype tests concerning free deformation of a viscous fluid patch with free surface are presented with comparisons between different methods to demonstrate the performance of the two proposed methods. Numerical results show that both the higher-order version using FPM and the coupled version using FPM/SPH outperform the original version of SPH in respect of accuracy and stability.
منابع مشابه
A smoothed-particle hydrodynamics model for ice-sheet and ice-shelf dynamics
Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing equations and boundary conditions. Standard grid-based methods require complex front-tracking techniques and have a limited capability to handle large material deformations and abrupt changes in bottom topography. Consequently, numerical methods are usually restricted to shallow ice-sheet and ice-shelf appro...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملاستفاده از روش SPH برای مدلسازی Sloshing در یک مخزن نیمه پر
The motion of fluids within partially filled containers has been the subject of much study by scientists and engineers due, in large part, to its importance in many practical applications. For example, civil engineers and seismologists have actively studied the effects of earthquake-induced fluid motions on oil tanks and water towers. In recent years, aerospace engineers have been concerned wit...
متن کاملNumerical Modelling of Viscous and Turbulent Free-surface Flows Using Smoothed Particle Hydrodynamics
This thesis presents the formulation of a Smoothed Particle Hydrodynamics (SPH) model and its application to a range of engineering applications. The motivation for this research lies in the desire to accurately model viscous and turbulent free-surface flows, including those with complete break-up of the free-surface. At present, boundary element modelling is typically chosen to describe free-s...
متن کامل